U.S. Department of Energy Distributed Energy and Electric Reliability Program

January 21, 22, and 23, 2003

Ritz - Carlton, Washington D.C.

"How The Future Distribution System Will Change The Nation's Electric Infrastructure"

Introduction

- Renewables Fall Short
- Will Deregulation Solve the Transmission Capacity Problem?
- The Greatest Change Will Occur in the Distribution System
- A New Distribution System Will Evolve
- What Will the Future Power Systems Look Like?

Performance Comparisons

- (1) Efficiency and Losses
- (2) Investment, Fuel and O&M Costs
- (3) Reliability and Power Quality
- (4) Emissions
- (5) Infrastructure Requirements
- (6) Electrical Environmental Effects
- (7) Installation Time
- (8) Electrical Safety
- (9) CCHP Opportunities
- (10) Financial Risk and Security Risk

Two Cases Are Considered

- (1) Central Station Generation Coal Fired Steam Turbine and T&D System
- (2) Self Generation Gas Turbine Recuperated Cycle With & W/O CCHP

Figure 3.

Table 1 Round ① - Efficiency and Losses Central Station Generation Steam Turbine and T&D System (See Figure 4.)

Overall Peak System Efficiency	Generation 35%	<u>Trans.</u> 33. 9%	Subtrans. 33. 2%	<u>Dist.</u> 30. 98%
Overall Average System Efficiency	35%	34.3%	33.8%	32.2%
Self Generation Gas Turbine Recu	perated Cycle w/	CCHP and w/	o CCHP (See Fig	gure 5.)
	Generation	Trans.	Subtrans.	<u>Dist.</u>
Overall Peak System Efficiency (including fuel gas compressor)				
(W/O CCHP)	29.9%			29. 4%
(W/ CCHP)	67. 2%			66.1%
Overall Average System Efficiency (including fuel gas compressor)				
(W/O CCHP)	28. 4%			27.9%

63.6%

Note: Average and peak losses are shown on Figures 4. and 5.

(W/ CCHP)

11/27/00

62.6%

Cost Comparison

The cost comparison consisted of:

- (1) Two 655 MW coal fired plants
- (2) 400 kW mini turbines with I / C engines for load following

Central Station Generation:

Actual cost = $$1489 / kW \text{ or } $1500 / kw \Rightarrow 3.58¢ / kWh$ Self Generation:

29.8% reserve margin is higher than central station generation because no interconnections to other utilities

Self Generation	Central Station	<u>Deviations</u>
Investment = 2.60¢	3.58 ¢	27% less
Cost of fuel = 5.4¢ w/o CCHP	1.55 ¢	3.5 x more
Cost of fuel = 2.42¢ w/ CCHP	<u>—</u>	1.6 x more
O & M = 1.00¢	.68¢	
Total = 6.02¢ w/ CCHP	5.81¢	.21¢ more
When Distribution costs T&D are added		
Total = 6.20¢	8.93¢	Self Generation is 30.6% less

Why is the Central Station Generation and T & D Power Delivery System being Challenged?

Transmission

- (1) High Reliability due to multiple lines, multiple generators and multiple interconnections.
- (2) Although multiple lines provide improved reliability, the increase in exposure due to the high density of lines and equipment causes many momentary outages and voltage sags.
- (3) Also, parallel lines have lower impedance which results in more customers seeing faults on the system.

Distribution

- (1) Low Reliability due to single radial lines
- (2) Environmental conditions such as wind, ice trees, etc. cause a few (2-3) sustained outages, and a large number (> 30) of momentary outages.
- (3) Distribution automation has reduced the number of sustained outages by providing alternative substation feeds via switches.

Round ③ Reliability - Frequency of Interruption - λ Where Do Outages Occur? λ- Average Data And, Best In Class Utility Data

Transmission	. 015	2.91%
Subtransmisson	. 10	19. 42%
Primary Total	<u>. 40</u> . 515	77. 67% 100. 00%
Subtransmission OHL	. 055	55%
UL	. 017	17%
STA	<u>. 028</u> . 10	28% 100%
Primary OHL	. 35	87. 5% Microgrid λ of interruption
UL	. 03	7. 5% $\lambda_{BIC} = 12.5\% \text{ x } .40^{(1)} = .050^{(3)}$
STA	.02	$\lambda_{AVG} = 12.5\% \times 1.05^{(2)} = .131^{(3)}$
Note (1): "Best in Class" λ	. 40	100%
Note (2): Average λ		

Note (3): w / o generation λ 's

11/27/00

Round @ Power Quality

400 kW Gas Turbine Generation:

IEEE 519:

Total Harmonic Current Distortion: $THD_1 = 5\%$ $THD_1 = 5\%$

Total Harmonic Voltage Distortion: $THD_V = < 2\%$ $THD_V = < 3\%$

Emissions

Micro & Mini – Turbine		U.S. Coal Generation	
	min.		
NO _X < 10 ppm,	3 - 4 ppm,	.41 lbs / MWh	5.6 lbs / MWh
CO < 40 ppm,	20 ppm,	1.5 lbs / kWh	1.3 - 2.25 lbs / kWh
SO ₂ .01 lbs / MWh			12 lbs / MWh
CO ₂ 1477 lbs / MWh - 1329 lbs / MWh			2,115 lbs / MWh

Winner Goes To: Self Generation Gas Turbine Recuperated Cycle

Central Station Generation and T & D Power Delivery System Requires Large Physical Space For Infrastructure

- (1) Generation and transmission are large users of land and create visual pollution.
- (2) UHV and EHV transmission may have a potential for electric and magnetic biological effects.
- (3) Transmission creates corona noise, electric shock, TV interference (TVI), and radio interference (RFI).
- (4) Acquiring large parcels of land is very difficult, time consuming, and expensive legal hassle (11 yrs. to build last transmission line and 91% of all property was previously owned).

- (1) Distribution infrastructure is intrusive to residential communities.
- (2) To shield substation equipment and reduce noise, walls, trees, and berms are often required around the perimeter of substations.
- (3) In densely populated areas, buildings may be required to house facilities.
- (4) Tree clearance is a reoccurring expensive maintenance cost and is a controversial procedure for customers to accept.

Infrastructure

	Miles		
Central Station Generation	Trans.	Dist.	
	115 kV & above		
25 - 100 Acres	440,000 total	25,000 each major utility	

Electrical Environmental Effects

Transmission

Corona occurs when ⇒ The Electric Field Intensity E exceeds the break down strength of air

Corona produces:

- (1) Light
- (2) Audible noise \geq 59 dB(A)
- (3) Radio Interference RI
- (4) Television Interference TVI
- (5) Conductor vibration
- (6) Ozone
- (7) Dissipated energy

Electric Fields \rightarrow 2 to 5 kV/m

Magnetic Fields → .1 to .5 gauss

Installation Time

Central Station &

Transmission

7-10 yrs.

Distribution

6 mon. to 2 yrs.

Self Generation

 \leq 6 mon.

Electrical Safety

Distribution

- All Overhead
- Ungrounded Delta
- High Impedance Faults on Y grounded distribution

Self Generation

- All Underground
- Y grounded distribution

Financial Risk & Security Risk

Less Financial Risk With DR

DR

- Small unit sizes to match incremental load increases
- Short lead times based on 6 month load forecasts

Central Station and T&D

- Huge financial investments required for Central Station and Transmission & Distribution
- Long lead times based on 10 year load forecasts can be very uncertain

Less Security Risk With DR

Central Station

Small number of large MW sizes

Self Generation

Large number of small kW sizes

Winner

Performance Comparison Round Number's		Central Station, & T&D	Self Generation
(1) Efficiency & Losses	w/o CCHP	V	
	w/ CCHP		V
(2) Investment, Fuel and	w/o CCHP	~	
O & M Costs	w/CCHP		~
(3) Reliability & Power Quality			~
(4) Emissions			~
(5) Infrastructure Requirements			~
(6) Electrical Environmental Effects			~
(7) Installation Time			~
	Primary	~	~
(8) Electrical Safety	Secondary		•

Winner

Performance Comparison Round Number's	Central Station, & T&D	Self Generation
(9) Combined Cooling, Heating, & Power Opportunities		~
(10) Financial Risk & Security Risk		~

Final Winner is Self Generation With CCHP

Figure 2. The Economy of Scale of Gas Turbine Generators Indicates The Ideal Size Ranges From 250-500 kW for Microgrid Applications

Figure 3. Dollar / kW of Investment vs. Net Electric Efficiency to Break Even With Grid Energy Cost

Why A System Of Generating Units Serving Aggregated Loads?

$$\frac{\text{(N = 1)}}{17.80 \text{ kVA}} \longrightarrow \frac{\text{(N = 24)}}{5.13 \text{ kVA}}$$

- 1. Lower diversified demands
- 2. Lower generation capability
- 3. Load profile is more stable
- 4. Reduced Load Following requirements
- 5. Higher efficiency
- 6. Lower reserve margins
- 7. Higher reliability: 95 % 98 % availability results in 438 → 175 hrs of outage vs. 99.99 % → 53 minutes of outage

Figure 8. Microgrid Configuration

Figure 3. "What will the Future Power System look like?"

The New Electric Power Infrastructure Requires:

- 1. A Portfolio Of Products To Be A Player In The New Electric Energy Business:
 - (a) Photovoltaics
- (e) Gas Turbines

(b) Wind

- (f) I/C Engines
- (c) Fuel Cells
- (g) Storage/Flywheels
- (d) External Heat Engines
- 2. Sizes Ranging From

25 kW → 2 MW's

To Serve All Loads

- 3. Microgrids And Modular Generation Components w/ and w/o CCHP Components
- 4. Low Cost, High Efficiency, High Availability

(\$500)

(40%)

(98%)

Low Emissions

Generation.

 $(< 7 \text{ ppm } NO_X)$

(< 10 ppm CO)

- 5. SOC To Monitor/Control Generation Throughout The World via Internet.
- **6.** Telecom Integrated With Power Systems.
- 7. Availability Of Natural Gas For Most Markets

FC Series – Fuel Cells

75 kW

IC Series – Internal Combustion Engines

75 and 150 kW

T Series – Mini Gas Turbines

375 to 700 kW

IC Series – Mid-Range

280 to 830 kW

IC Series – ENI 1000

1 MW

XC Series – External Combustion Engines

25 kW

Integrating DR's Into Existing Electric Distribution System Will:

- (1) Improve Reliability And Power Quality
- (2) Reduce Thermal Overloads
- (3) Improve Voltage Regulation
- (4) Reduce Cost
- (5) Improve Efficiency And Reduce Losses
- (6) Reduce Emissions

The Dawn Of A New Horizon